Difference between revisions of "Topology Level Codelist"

From DGIWG
Jump to: navigation, search
 
(2 intermediate revisions by the same user not shown)
Line 4: Line 4:
  
  
{| style="border-spacing:0;width:16.245cm;"
+
{| style="border-spacing:0;width:30cm;"
 
|-
 
|-
 
! style="border:1pt solid #000000;padding:0.049cm;" | #
 
! style="border:1pt solid #000000;padding:0.049cm;" | #
Line 10: Line 10:
 
! style="border-top:1pt solid #000000;border-bottom:1pt solid #000000;border-left:none;border-right:1pt solid #000000;padding-top:0.049cm;padding-bottom:0.049cm;padding-left:0cm;padding-right:0.049cm;" | English Name
 
! style="border-top:1pt solid #000000;border-bottom:1pt solid #000000;border-left:none;border-right:1pt solid #000000;padding-top:0.049cm;padding-bottom:0.049cm;padding-left:0cm;padding-right:0.049cm;" | English Name
 
! align=center style="border-top:1pt solid #000000;border-bottom:1pt solid #000000;border-left:none;border-right:1pt solid #000000;padding-top:0.049cm;padding-bottom:0.049cm;padding-left:0cm;padding-right:0.049cm;" | Definition
 
! align=center style="border-top:1pt solid #000000;border-bottom:1pt solid #000000;border-left:none;border-right:1pt solid #000000;padding-top:0.049cm;padding-bottom:0.049cm;padding-left:0cm;padding-right:0.049cm;" | Definition
 +
! align=center style="border-top:1pt solid #000000;border-bottom:1pt solid #000000;border-left:none;border-right:1pt solid #000000;padding-top:0.049cm;padding-bottom:0.049cm;padding-left:0cm;padding-right:0.049cm;" | Source
 
|-
 
|-
 
| align=center style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0.049cm;padding-right:0.049cm;color:#000000;" | 1
 
| align=center style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0.049cm;padding-right:0.049cm;color:#000000;" | 1
Line 15: Line 16:
 
| style="border-top:none;border-bottom:1pt solid #000000;border-left:none;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0cm;padding-right:0.049cm;color:#000000;" | Geometry Only
 
| style="border-top:none;border-bottom:1pt solid #000000;border-left:none;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0cm;padding-right:0.049cm;color:#000000;" | Geometry Only
 
| style="border-top:none;border-bottom:1pt solid #000000;border-left:none;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0cm;padding-right:0.049cm;color:#000000;" | Geometry objects without any additional structure which describes topology.
 
| style="border-top:none;border-bottom:1pt solid #000000;border-left:none;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0cm;padding-right:0.049cm;color:#000000;" | Geometry objects without any additional structure which describes topology.
 +
| style="border-top:none;border-bottom:1pt solid #000000;border-left:none;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0cm;padding-right:0.049cm;color:#000000;" |
 
|-
 
|-
 
| align=center style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0.049cm;padding-right:0.049cm;color:#000000;" | 2
 
| align=center style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0.049cm;padding-right:0.049cm;color:#000000;" | 2
Line 20: Line 22:
 
| style="border-top:none;border-bottom:1pt solid #000000;border-left:none;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0cm;padding-right:0.049cm;color:#000000;" | Topology 1D
 
| style="border-top:none;border-bottom:1pt solid #000000;border-left:none;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0cm;padding-right:0.049cm;color:#000000;" | Topology 1D
 
| style="border-top:none;border-bottom:1pt solid #000000;border-left:none;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0cm;padding-right:0.049cm;color:#000000;" | 1-dimensional topological complex - commonly called "chain-node" topology
 
| style="border-top:none;border-bottom:1pt solid #000000;border-left:none;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0cm;padding-right:0.049cm;color:#000000;" | 1-dimensional topological complex - commonly called "chain-node" topology
 +
| style="border-top:none;border-bottom:1pt solid #000000;border-left:none;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0cm;padding-right:0.049cm;color:#000000;" |
 
|-
 
|-
 
| align=center style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0.049cm;padding-right:0.049cm;color:#000000;" | 3
 
| align=center style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0.049cm;padding-right:0.049cm;color:#000000;" | 3
Line 25: Line 28:
 
| style="border-top:none;border-bottom:1pt solid #000000;border-left:none;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0cm;padding-right:0.049cm;color:#000000;" | Planar Graph
 
| style="border-top:none;border-bottom:1pt solid #000000;border-left:none;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0cm;padding-right:0.049cm;color:#000000;" | Planar Graph
 
| style="border-top:none;border-bottom:1pt solid #000000;border-left:none;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0cm;padding-right:0.049cm;color:#000000;" | 1-dimensional topological complex that is planar. A planar graph is a graph that can be drawn in a plane in such a way that no two edges intersect except at a vertex.
 
| style="border-top:none;border-bottom:1pt solid #000000;border-left:none;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0cm;padding-right:0.049cm;color:#000000;" | 1-dimensional topological complex that is planar. A planar graph is a graph that can be drawn in a plane in such a way that no two edges intersect except at a vertex.
 +
| style="border-top:none;border-bottom:1pt solid #000000;border-left:none;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0cm;padding-right:0.049cm;color:#000000;" |
 
|-
 
|-
 
| align=center style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0.049cm;padding-right:0.049cm;color:#000000;" | 4
 
| align=center style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0.049cm;padding-right:0.049cm;color:#000000;" | 4
Line 30: Line 34:
 
| style="border-top:none;border-bottom:1pt solid #000000;border-left:none;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0cm;padding-right:0.049cm;color:#000000;" | Full Planar Graph
 
| style="border-top:none;border-bottom:1pt solid #000000;border-left:none;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0cm;padding-right:0.049cm;color:#000000;" | Full Planar Graph
 
| style="border-top:none;border-bottom:1pt solid #000000;border-left:none;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0cm;padding-right:0.049cm;color:#000000;" | 2-dimensional topological complex that is planar (A 2-dimensional topological complex is commonly called "full topology" in a cartographic 2D environment)
 
| style="border-top:none;border-bottom:1pt solid #000000;border-left:none;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0cm;padding-right:0.049cm;color:#000000;" | 2-dimensional topological complex that is planar (A 2-dimensional topological complex is commonly called "full topology" in a cartographic 2D environment)
 +
| style="border-top:none;border-bottom:1pt solid #000000;border-left:none;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0cm;padding-right:0.049cm;color:#000000;" |
 
|-
 
|-
 
| align=center style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0.049cm;padding-right:0.049cm;color:#000000;" | 5
 
| align=center style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0.049cm;padding-right:0.049cm;color:#000000;" | 5
Line 35: Line 40:
 
| style="border-top:none;border-bottom:1pt solid #000000;border-left:none;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0cm;padding-right:0.049cm;color:#000000;" | Surface Graph
 
| style="border-top:none;border-bottom:1pt solid #000000;border-left:none;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0cm;padding-right:0.049cm;color:#000000;" | Surface Graph
 
| style="border-top:none;border-bottom:1pt solid #000000;border-left:none;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0cm;padding-right:0.049cm;color:#000000;" | 1-dimensional topological complex that is isomorphic to a subset of a surface. A geometric complex is isomorphic to a topological complex if their elements are in a one-to-one, dimensional- and boundary-preserving correspondence to one another.
 
| style="border-top:none;border-bottom:1pt solid #000000;border-left:none;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0cm;padding-right:0.049cm;color:#000000;" | 1-dimensional topological complex that is isomorphic to a subset of a surface. A geometric complex is isomorphic to a topological complex if their elements are in a one-to-one, dimensional- and boundary-preserving correspondence to one another.
 +
| style="border-top:none;border-bottom:1pt solid #000000;border-left:none;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0cm;padding-right:0.049cm;color:#000000;" |
 
|-
 
|-
 
| align=center style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0.049cm;padding-right:0.049cm;color:#000000;" | 6
 
| align=center style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0.049cm;padding-right:0.049cm;color:#000000;" | 6
Line 40: Line 46:
 
| style="border-top:none;border-bottom:1pt solid #000000;border-left:none;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0cm;padding-right:0.049cm;color:#000000;" | Full Surface Graph
 
| style="border-top:none;border-bottom:1pt solid #000000;border-left:none;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0cm;padding-right:0.049cm;color:#000000;" | Full Surface Graph
 
| style="border-top:none;border-bottom:1pt solid #000000;border-left:none;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0cm;padding-right:0.049cm;color:#000000;" | 2-dimensional topological complex that is isomorphic to a subset of a surface.
 
| style="border-top:none;border-bottom:1pt solid #000000;border-left:none;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0cm;padding-right:0.049cm;color:#000000;" | 2-dimensional topological complex that is isomorphic to a subset of a surface.
 +
| style="border-top:none;border-bottom:1pt solid #000000;border-left:none;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0cm;padding-right:0.049cm;color:#000000;" |
 
|-
 
|-
 
| align=center style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0.049cm;padding-right:0.049cm;color:#000000;" | 7
 
| align=center style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0.049cm;padding-right:0.049cm;color:#000000;" | 7
Line 45: Line 52:
 
| style="border-top:none;border-bottom:1pt solid #000000;border-left:none;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0cm;padding-right:0.049cm;color:#000000;" | Topology 3D
 
| style="border-top:none;border-bottom:1pt solid #000000;border-left:none;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0cm;padding-right:0.049cm;color:#000000;" | Topology 3D
 
| style="border-top:none;border-bottom:1pt solid #000000;border-left:none;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0cm;padding-right:0.049cm;color:#000000;" | 3-dimensional topological complex. A topological complex is a collection of topological primitives that are closed under the boundary operations.
 
| style="border-top:none;border-bottom:1pt solid #000000;border-left:none;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0cm;padding-right:0.049cm;color:#000000;" | 3-dimensional topological complex. A topological complex is a collection of topological primitives that are closed under the boundary operations.
 +
| style="border-top:none;border-bottom:1pt solid #000000;border-left:none;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0cm;padding-right:0.049cm;color:#000000;" |
 
|-
 
|-
 
| align=center style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0.049cm;padding-right:0.049cm;color:#000000;" | 8
 
| align=center style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0.049cm;padding-right:0.049cm;color:#000000;" | 8
Line 50: Line 58:
 
| style="border-top:none;border-bottom:1pt solid #000000;border-left:none;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0cm;padding-right:0.049cm;color:#000000;" | Full Topology 3D
 
| style="border-top:none;border-bottom:1pt solid #000000;border-left:none;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0cm;padding-right:0.049cm;color:#000000;" | Full Topology 3D
 
| style="border-top:none;border-bottom:1pt solid #000000;border-left:none;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0cm;padding-right:0.049cm;color:#000000;" | complete coverage of a 3D Euclidean coordinate space
 
| style="border-top:none;border-bottom:1pt solid #000000;border-left:none;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0cm;padding-right:0.049cm;color:#000000;" | complete coverage of a 3D Euclidean coordinate space
 +
| style="border-top:none;border-bottom:1pt solid #000000;border-left:none;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0cm;padding-right:0.049cm;color:#000000;" |
 
|-
 
|-
 
| align=center style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0.049cm;padding-right:0.049cm;color:#000000;" | 9
 
| align=center style="border-top:none;border-bottom:1pt solid #000000;border-left:1pt solid #000000;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0.049cm;padding-right:0.049cm;color:#000000;" | 9
Line 55: Line 64:
 
| style="border-top:none;border-bottom:1pt solid #000000;border-left:none;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0cm;padding-right:0.049cm;color:#000000;" | Abstract
 
| style="border-top:none;border-bottom:1pt solid #000000;border-left:none;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0cm;padding-right:0.049cm;color:#000000;" | Abstract
 
| style="border-top:none;border-bottom:1pt solid #000000;border-left:none;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0cm;padding-right:0.049cm;color:#000000;" | topological complex without any specified geometric realisation.
 
| style="border-top:none;border-bottom:1pt solid #000000;border-left:none;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0cm;padding-right:0.049cm;color:#000000;" | topological complex without any specified geometric realisation.
 +
| style="border-top:none;border-bottom:1pt solid #000000;border-left:none;border-right:1pt solid #000000;padding-top:0cm;padding-bottom:0.049cm;padding-left:0cm;padding-right:0.049cm;color:#000000;" |
 
|-
 
|-
 
|}
 
|}

Latest revision as of 17:07, 4 May 2021

Topology Level Codelist

The value domain of Topology Level Codelist is defined in the following table.


# Code English Name Definition Source
1 geometryOnly Geometry Only Geometry objects without any additional structure which describes topology.
2 topology1D Topology 1D 1-dimensional topological complex - commonly called "chain-node" topology
3 planarGraph Planar Graph 1-dimensional topological complex that is planar. A planar graph is a graph that can be drawn in a plane in such a way that no two edges intersect except at a vertex.
4 fullPlanarGraph Full Planar Graph 2-dimensional topological complex that is planar (A 2-dimensional topological complex is commonly called "full topology" in a cartographic 2D environment)
5 surfaceGraph Surface Graph 1-dimensional topological complex that is isomorphic to a subset of a surface. A geometric complex is isomorphic to a topological complex if their elements are in a one-to-one, dimensional- and boundary-preserving correspondence to one another.
6 fullSurfaceGraph Full Surface Graph 2-dimensional topological complex that is isomorphic to a subset of a surface.
7 topology3D Topology 3D 3-dimensional topological complex. A topological complex is a collection of topological primitives that are closed under the boundary operations.
8 fullTopology3D Full Topology 3D complete coverage of a 3D Euclidean coordinate space
9 abstract Abstract topological complex without any specified geometric realisation.